438 research outputs found

    Optimization of a Coded-Modulation System with Shaped Constellation

    Get PDF
    Conventional communication systems transmit signals that are selected from a signal constellation with uniform probability. However, information-theoretic results suggest that performance may be improved by shaping the constellation such that lower-energy signals are selected more frequently than higher-energy signals. This dissertation presents an energy efficient approach for shaping the constellations used by coded-modulation systems. The focus is on designing shaping techniques for systems that use a combination of amplitude phase shift keying (APSK) and low-density parity check (LDPC) coding. Such a combination is typical of modern satellite communications, such as the system used by the DVB-S2 standard.;The system implementation requires that a subset of the bits at the output of the LDPC encoder are passed through a nonlinear shaping encoder whose output bits are more likely to be a zero than a one. The constellation is partitioned into a plurality of sub-constellations, each with a different average signal energy, and the shaping bits are used to select the sub-constellation. An iterative receiver exchanges soft information among the demodulator, LDPC decoder, and shaping decoder. Parameters associated with the modulation and shaping code are optimized with respect to information rate, while the design of the LDPC code is optimized for the shaped modulation with the assistance of extrinsic-information transfer (EXIT) charts. The rule for labeling the constellation with bits is optimized using a novel hybrid cost function and a binary switching algorithm.;Simulation results show that the combination of constellation shaping, LDPC code optimization, and optimized bit labeling can achieve a gain in excess of 1 dB in an additive white Gaussian noise (AWGN) channel at a rate of 3 bits/symbol compared with a system that adheres directly to the DVB-S2 standard

    Constellation Shaping for Bit-Interleaved LDPC Coded APSK

    Full text link
    An energy-efficient approach is presented for shaping a bit-interleaved low-density parity-check (LDPC) coded amplitude phase-shift keying (APSK) system. A subset of the interleaved bits output by a binary LDPC encoder are passed through a nonlinear shaping encoder whose output is more likely to be a zero than a one. The "shaping" bits are used to select from among a plurality of subconstellations, while the unshaped bits are used to select the symbol within the subconstellation. Because the shaping bits are biased, symbols from lower-energy subconstellations are selected more frequently than those from higher-energy subconstellations. An iterative decoder shares information among the LDPC decoder, APSK demapper, and shaping decoder. Information rates are computed for a discrete set of APSK ring radii and shaping bit probabilities, and the optimal combination of these parameters is identified for the additive white Gaussian noise (AWGN) channel. With the assistance of extrinsic-information transfer (EXIT) charts, the degree distributions of the LDPC code are optimized for use with the shaped APSK constellation. Simulation results show that the combination of shaping, degree-distribution optimization, and iterative decoding can achieve a gain in excess of 1 dB in AWGN at a rate of 3 bits/symbol compared with a system that does not use shaping, uses an unoptimized code from the DVB-S2 standard, and does not iterate between decoder and demodulator.Comment: to appear in IEEE Transactions on Communication

    Understanding Edge-of-Stability Training Dynamics with a Minimalist Example

    Full text link
    Recently, researchers observed that gradient descent for deep neural networks operates in an ``edge-of-stability'' (EoS) regime: the sharpness (maximum eigenvalue of the Hessian) is often larger than stability threshold 2/η\eta (where η\eta is the step size). Despite this, the loss oscillates and converges in the long run, and the sharpness at the end is just slightly below 2/η2/\eta. While many other well-understood nonconvex objectives such as matrix factorization or two-layer networks can also converge despite large sharpness, there is often a larger gap between sharpness of the endpoint and 2/η2/\eta. In this paper, we study EoS phenomenon by constructing a simple function that has the same behavior. We give rigorous analysis for its training dynamics in a large local region and explain why the final converging point has sharpness close to 2/η2/\eta. Globally we observe that the training dynamics for our example has an interesting bifurcating behavior, which was also observed in the training of neural nets.Comment: 53 pages, 19 figure

    Diff-Transfer: Model-based Robotic Manipulation Skill Transfer via Differentiable Physics Simulation

    Full text link
    The capability to transfer mastered skills to accomplish a range of similar yet novel tasks is crucial for intelligent robots. In this work, we introduce Diff-Transfer\textit{Diff-Transfer}, a novel framework leveraging differentiable physics simulation to efficiently transfer robotic skills. Specifically, Diff-Transfer\textit{Diff-Transfer} discovers a feasible path within the task space that brings the source task to the target task. At each pair of adjacent points along this task path, which is two sub-tasks, Diff-Transfer\textit{Diff-Transfer} adapts known actions from one sub-task to tackle the other sub-task successfully. The adaptation is guided by the gradient information from differentiable physics simulations. We propose a novel path-planning method to generate sub-tasks, leveraging QQ-learning with a task-level state and reward. We implement our framework in simulation experiments and execute four challenging transfer tasks on robotic manipulation, demonstrating the efficacy of Diff-Transfer\textit{Diff-Transfer} through comprehensive experiments. Supplementary and Videos are on the website https://sites.google.com/view/difftransfe

    Prognostic nomogram for bladder cancer with brain metastases: a National Cancer Database analysis.

    Get PDF
    BACKGROUND: This study aimed to establish and validate a nomogram for predicting brain metastasis in patients with bladder cancer (BCa) and assess various treatment modalities using a primary cohort comprising 234 patients with clinicopathologically-confirmed BCa from 2004 to 2015 in the National Cancer Database. METHODS: Machine learning method and Cox model were used for nomogram construction. For BCa patients with brain metastasis, surgery of the primary site, chemotherapy, radiation therapy, palliative care, brain confinement of metastatic sites, and the Charlson/Deyo Score were predictive features identified for building the nomogram. RESULTS: For the original 169 patients considered in the model, the areas under the receiver operating characteristic curve (AUC) were 0.823 (95% CI 0.758-0.889, P \u3c 0.001) and 0.854 (95% CI 0.785-0.924, P \u3c 0.001) for 0.5- and 1-year overall survival respectively. In the validation cohort, the nomogram displayed similar AUCs of 0.838 (95% CI 0.738-0.937, P \u3c 0.001) and 0.809 (95% CI 0.680-0.939, P \u3c 0.001), respectively. The high and low risk groups had median survivals of 1.91 and 5.09 months for the training cohort and 1.68 and 8.05 months for the validation set, respectively (both P \u3c 0.0001). CONCLUSIONS: Our prognostic nomogram provides a useful tool for overall survival prediction as well as assessing the risk and optimal treatment for BCa patients with brain metastasis

    Research on the collaborative evolution process of information in public health emergencies based on complex adaptive system theory and social network analysis: a case study of the COVID-19 pandemic

    Get PDF
    IntroductionThis review aimed to elucidate the significance of information collaboration in the prevention and control of public health emergencies, and its evolutionary pathway guided by the theory of complex adaptive systems.MethodsThe study employed time-slicing techniques and social network analysis to translate the dynamic evolution of information collaboration into a stage-based static representation. Data were collected from January to April 2020, focusing on the COVID-19 pandemic. Python was used to amass data from diverse sources including government portals, public commentary, social organizations, market updates, and healthcare institutions. Post data collection, the structures, collaboration objectives, and participating entities within each time slice were explored using social network analysis.ResultsThe findings suggest that the law of evolution for information collaboration in public health emergencies primarily starts with small-scale collaboration, grows to full-scale in the middle phase, and then reverts to small-scale in the final phase. The network’s complexity increases initially and then gradually decreases, mirroring changes in collaboration tasks, objectives, and strategies.DiscussionThe dynamic pattern of information collaboration highlighted in this study offers valuable insights for enhancing emergency management capabilities. Recognizing the evolving nature of information collaboration can significantly improve information processing efficiency during public health crises
    • …
    corecore